首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Derivation of major yolk proteins from parental vitellogenins and alternative processing during oocyte maturation in Fundulus heteroclitus
Authors:LaFleur Gary J  Raldúa Demetrio  Fabra Mercedes  Carnevali Oliana  Denslow Nancy  Wallace Robin A  Cerdà Joan
Institution:Nicholls State University, Thibodaux, Louisiana 70310, USA.
Abstract:Various Coomassie blue-staining yolk proteins (YPs) present in oocytes and eggs of Fundulus heteroclitus, a teleost that produces low hydrated, demersal eggs (benthophil species), were subjected to N-terminal microsequencing. Four YPs were N-terminally blocked, while five yielded sequence information. Of the latter, four corresponded to internal sequences of vitellogenin 1 (Vg1), whereas a fifth band corresponded to the N-terminal sequence of Vg2. Phosphorylated YPs (phosvitins and phosvettes) derived from the polyserine domain of Vg were not successfully sequenced. The major N-terminally blocked 122-and 103-kDa YPs both represented the lipovitellin heavy chain of Vg1 (LvH1), and thus most of the oocyte YPs were derived from Vg1. During oocyte maturation in vivo and in vitro, the LvH1 122 is degraded, concomitant with an increased enzymatic activity of cathepsin B, while the 45-kDa YP is converted to a 42-kDa YP. The LvH1 122 was found to contain a consensus site for proteolytic degradation (PEST) near its C-terminus, which is missing from its stable, but truncated twin sequence, LvH1 103. We suggest that this site becomes exposed to cathepsin B during the hydration process that accompanies oocyte maturation and renders the LvH1 122 susceptible to proteolysis. PEST sites are found in Vg sequences from other benthophil fish, whereas, interestingly, they are missing in marine teleosts that spawn highly hydrated, pelagic eggs (pelagophil species), displaying a different pattern of Vg incorporation into YPs and LvH1 and LvH2 processing to that found in F. heteroclitus. Thus, different models of Vg/YP precursor/product relationship and further processing during oocyte maturation and hydration are proposed for pelagophil and benthophil teleosts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号