首页 | 本学科首页   官方微博 | 高级检索  
     


Deciphering the Physalis floridana Double-Layered-Lantern1 Mutant Provides Insights into Functional Divergence of the GLOBOSA Duplicates within the Solanaceae
Authors:Ji-Si Zhang  Zhichao Li  Jing Zhao  Shaohua Zhang  Hui Quan  Man Zhao  Chaoying He
Affiliation:State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian, 100093 Beijing, China (J.-S.Z., Z.L., J.Z., S.Z., H.Q., M.Z., C.H.); and;University of Chinese Academy of Sciences, Yuquan Road 19, 100049 Beijing, China (J.-S.Z., Z.L., J.Z., S.Z., H.Q., M.Z.)
Abstract:Glycosylphosphatidylinositol-anchor biosynthesis and glycosylphosphatidylinositol modification of proteins are central to coordinated plant development.Since their discovery (Low and Saltiel, 1988), glycosylphosphatidylinositol-anchored proteins (GPI-APs) have provoked intense interest as crucial regulators for growth, morphogenesis, reproduction, and disease pathogenesis in organisms ranging from yeast and trypanosomes to animals and plants. The lipid moiety, the glycosylphosphatidylinositol (GPI) anchor, is synthesized in the endoplasmic reticulum (ER); the protein component is cotranslationally inserted into the ER and posttranslationally modified by the addition of a GPI anchor (Kinoshita et al., 2013; Fig. 1). GPI-APs are then transported via the Golgi to the outer surface of the plasma membrane. The lipid anchor mediates stable attachment of these proteins to the cell surface, where some play important roles as signaling regulators from sphingolipid- and sterol-enriched membrane microdomains (Simons and Gerl, 2010). Some GPI-APs are released from the cell membrane by phosphatidylinositol-specific phospholipases to the extracellular matrix, where they might engage in processes such as cell adhesion and cell-cell communication. In Arabidopsis (Arabidopsis thaliana), there are about 250 predicted GPI-APs (Borner et al., 2003), a relatively large number compared with about 150 in mammals and 50 in the budding yeast (Saccharomyces cerevisiae). Important functions for plant GPI-APs have been elucidated through the study of individual proteins, such as the COBRA family in cell expansion and cell wall biosynthesis (Brady et al., 2007), ARABINOGALACTAN PROTEIN18 in megagametogenesis (Demesa-Arévalo and Vielle-Calzada, 2013), and LORELEI in the pollen tube-female gametophyte interaction (Capron et al., 2008; Tsukamoto et al., 2010; Duan et al., 2014). However, it is the studies of mutants defective in GPI biosynthesis that underscore the general importance of GPI-APs as a class: lacking the capacity to assemble the anchor is lethal.Open in a separate windowFigure 1.GPI anchor biosynthesis pathway. Ten or 11 stepwise modifications of phosphoinositide occur, starting from the synthesis of N-glucosamine-phosphoinositide on the cytoplasmic surface of the ER, followed by its flipping to the ER lumenal side for additional modifications, ending with the addition of the terminal ethanolamine phosphate. Proteins destined for GPI modification are synthesized with a C-terminal signature sequence recognized by the GPI transamidase (a five-protein-enzyme complex) that concomitantly cleaves the peptide at what is designated as the ω and ω+1 amino acids and attaches the GPI anchor in a transamination reaction (red arrows). The GPI-modified proteins are then sorted and transported via the Golgi apparatus to the cell membrane. The established biosynthetic proteins from Arabidopsis and their mammalian homologs are indicated; the galactosylation step appears to be plant specific. The diagram is modeled after figure 3 in Ellis et al. (2010), which also provided a complete list of potential plant orthologs of the human and yeast proteins in the pathway.The GPI anchor is synthesized by an elaborate biosynthetic pathway, starting on the cytoplasmic side of the ER and ending with a completely assembled core anchor on the lumenal surface of the ER (Fig. 1). Prior to their transport out of the ER, proteins destined for GPI modification are cleaved at a C-terminal signature sequence by a GPI transamidase complex that in two enzymatic steps concomitantly attaches a GPI anchor to the C terminus of processed proteins (Kinoshita, 2014). Most of the knowledge on GPI biosynthesis and GPI-AP modification is derived from studies in mammals and yeast, but the pathway is likely to be conserved in plants (Ellis et al., 2010). In a recent article in Plant Physiology, Dai et al. (2014) reported that a GPI anchor biosynthesis mutant, abnormal pollen tube guidance1 (atpg1), displays both embryo lethality and severely depressed male fertility. They determined that APTG1 is homologous to the yeast GPI10 and human PIG-B (for phosphatidylinositol glycan anchor biosynthesis) proteins, the last of three distinct mannosyltransferases that modify the precursor anchor (Fig. 1), and showed that APTG1 can functionally substitute for GPI10 in a conditionally lethal gpi10 yeast mutant. Previous studies have demonstrated that Arabidopsis SETH1 (a male fertility god in Egyptian mythology), SETH2, and PEANUT1 (PNT1), encoding homologs of mammalian PIG-C, PIG-A, and PIG-M (Fig. 1) and their corresponding yeast counterparts, respectively, are important for male fertility (Lalanne et al., 2004; Gillmor et al., 2005). In addition, loss of the first mannosyltransferase in the pathway in pnt1 results in early seedling lethality. pnt1 embryos are severely defective, displaying various cell division anomalies and exhibiting altered levels and ectopic deposition of cell wall polymers. The results reported by Dai et al. (2014), therefore, further demonstrate the conservation of the GPI biosynthesis pathway and the importance of GPI anchoring in plant development and reproduction.The aptg1 mutant was isolated in a search for mutants defective in pollen tube targeting of ovules (Fig. 2), an intriguing and crucial step in plant reproduction. A pollen tube is guided to an ovule by attractants, and upon reaching the target, the female gametophyte, the pollen tube ruptures, ejecting its cytoplasm and releasing sperm for fertilization (Dresselhaus and Franklin-Tong, 2013). aptg1 pollen tubes either fail to target ovules or undertake a more twisted pathway before entering an ovule. In an earlier study, Li et al. (2013) showed that a GPI-AP, COBRA-LIKE10 (COBL10), is required to maintain normal pollen tube growth rates and ovule targeting efficiency. In aptg1 pollen tubes, citrine fluorescent protein-COBL10 was absent from its normal apical membrane location while the citrine fluorescent signal in the cytoplasm was more intense, implying that the diminished presence of COBL10 on the apical membrane could be an underlying cause for the ovule-targeting phenotype. This observation also demonstrates that GPI anchoring is important for the subsequent sorting and transport of these proteins to their destined locations (Kinoshita et al., 2013) and consistent with a wholesale failure of GPI-APs to reach their functional locations as underlying lethality in GPI biosynthesis mutants.Open in a separate windowFigure 2.Pollen tube targeting of ovules in an Arabidopsis pistil. GUS-expressing pollen grains pollinated the pistil. Each blue dot represents discharged cytoplasm from a pollen tube that, in response to attractants, has successfully targeted the ovule and penetrated the female gametophyte and was induced to burst. The cytoplasmic discharge releases sperm for fertilization.While it is clear that major biological roles are played by GPI-APs, many questions remain. Most constituents of the plant GPI anchor biosynthetic pathway remain to be functionally established (Fig. 1). Much has been said about the membrane environments where GPI-APs are localized, but we are far from understanding the precise roles they play in assembling these domains and regulating their functional dynamics. Advances in high-resolution imaging at the cell surface and biochemical approaches to determine the constituents in these membrane microdomains (Simons and Gerl, 2010) should accelerate our understanding of the importance of GPI anchoring as a conserved strategy among eukaryotes to control a wide range of processes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号