首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Compound-specific differences in (13)C of soluble carbohydrates in leaves and phloem of 6-month-old Eucalyptus globulus (Labill)
Authors:Merchant Andrew  Wild Birgit  Richter Andreas  Bellot Sidonie  Adams Mark A  Dreyer Erwin
Institution:Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Sydney 2006, Australia. andrew.merchant@sydney.edu.au
Abstract:Movement of photoassimilates from leaves to phloem is an important step for the flux of carbon through plants. Fractionation of carbon isotopes during this process may influence their abundance in heterotrophic tissues. We subjected Eucalyptus globulus to 20, 25 and 28 °C ambient growth temperatures and measured compound-specific δ(13)C of carbohydrates obtained from leaves and bled phloem sap. We compared δ(13)C of sucrose and raffinose obtained from leaf or phloem and of total leaf soluble carbon, with modelled values predicted by leaf gas exchange. Changes in δ(13)C of sucrose and raffinose obtained from either leaves or phloem sap were more tightly coupled to changes in c(i)/c(a) than was δ(13)C of leaf soluble carbon. At 25 and 28 °C, sucrose and raffinose were enriched in (13)C compared to leaf soluble carbon and predicted values - irrespective of tissue type. Phloem sucrose was depleted and raffinose enriched in (13)C compared to leaf extracts. Intermolecular and tissue-specific δ(13)C reveal that multiple systematic factors influence (13)C composition during export to phloem. Predicting sensitivity of these factors to changes in plant physiological status will improve our ability to infer plant function at a range of temporal and spatial scales.
Keywords:Eucalyptus  compound‐specific isotope composition  phloem sap
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号