Abstract: | It has been shown that measurements of the diffusing capacity of the lung for CO made during a slow exhalation [DLCO(exhaled)] yield information about the distribution of the diffusing capacity in the lung that is not available from the commonly measured single-breath diffusing capacity [DLCO(SB)]. Current techniques of measuring DLCO(exhaled) require the use of a rapid-responding (less than 240 ms, 10-90%) CO meter to measure the CO concentration in the exhaled gas continuously during exhalation. DLCO(exhaled) is then calculated using two sample points in the CO signal. Because DLCO(exhaled) calculations are highly affected by small amounts of noise in the CO signal, filtering techniques have been used to reduce noise. However, these techniques reduce the response time of the system and may introduce other errors into the signal. We have developed an alternate technique in which DLCO(exhaled) can be calculated using the concentration of CO in large discrete samples of the exhaled gas, thus eliminating the requirement of a rapid response time in the CO analyzer. We show theoretically that this method is as accurate as other DLCO(exhaled) methods but is less affected by noise. These findings are verified in comparisons of the discrete-sample method of calculating DLCO(exhaled) to point-sample methods in normal subjects, patients with emphysema, and patients with asthma. |