首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae
Authors:Tarrío R  Rodríguez-Trelles F  Ayala F J
Institution:Department of Ecology and Evolutionary Biology, University of California at Irvine, 92697-2525, USA.
Abstract:Compositional changes are a major feature of genome evolution. Overlooking nucleotide composition differences among sequences can seriously mislead phylogenetic reconstructions. Large compositional variation exists among the members of the family Drosophilidae. Until now, however, base composition differences have been largely neglected in the formulations of the nucleotide substitution process used to reconstruct the phylogeny of this important group of species. The present study adopts a maximum-likelihood framework of phylogenetic inference in order to analyze five nuclear gene regions and shows that (1) the pattern of compositional variation in the Drosophilidae does not match the phylogeny of the species; (2) accounting for the heterogeneous GC content with Galtier and Gouy's nucleotide substitution model leads to a tree that differs in significant aspects from the tree inferred when the nucleotide composition differences are ignored, even though both phylogenetic hypotheses attain strong nodal support in the bootstrap analyses; and (3) the LogDet distance correction cannot completely overcome the distorting effects of the compositional variation that exists among the species of the Drosophilidae. Our analyses confidently place the Chymomyza genus as an outgroup closer than the genus Scaptodrosophila to the Drosophila genus and conclusively support the monophyly of the Sophophora subgenus.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号