首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intrinsic disorder in the kinesin superfamily
Authors:Mark A Seeger  Sarah E Rice
Institution:1. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL, 60611-3008, USA
Abstract:Kinesin molecular motors perform a myriad of intracellular transport functions. While their mechanochemical mechanisms are well understood and well-conserved throughout the superfamily, the cargo-binding and regulatory mechanisms governing the activity of kinesins are highly diverse and, in general, incompletely characterized. Here we present evidence from bioinformatic predictions indicating that most kinesin superfamily members contain significant regions of intrinsically disordered (ID) residues. ID regions can bind to multiple partners with high specificity and are highly labile to post-translational modification and degradation signals. In kinesins, the predicted ID regions are primarily found in areas outside the motor domains, where primary sequences diverge by family, suggesting that the ID may be a critical structural element for determining the functional specificity of individual kinesins. To support this concept, we present a systematic analysis of the kinesin superfamily, family by family, for predicted ID regions. We combine this analysis with a comprehensive review of kinesin-binding partners and post-translational modifications. We find two key trends across the entire kinesin superfamily. First, ID residues tend to be in the tail regions of kinesins, opposite the superfamily-conserved motor domains. Second, predicted ID regions correlate to regions that are known to bind to cargoes and/or undergo post-translational modifications. We therefore propose that the ID residue is a structural element utilized by the kinesin superfamily in order to impart functional specificity to individual kinesins.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号