首页 | 本学科首页   官方微博 | 高级检索  
     


Properties and Role of Glyceraldehyde-3-Phosphate Dehydrogenase in the Control of Fermentation Pattern and Growth in a Ruminal Bacterium, Streptococcus bovis
Authors:Narito Asanuma  Kimio Yoshizawa  Tsuneo Hino
Affiliation:(1) Department of Life Science, College of Agriculture, Meiji University, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
Abstract:To clarify the control of glycolysis and the fermentation pattern in Streptococcus bovis, the molecular and enzymatic properties of NAD+-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were examined. The GAPDH gene (gapA) was found to cluster with several others, including those that encode phosphoglycerate kinase and translation elongation factor G, however, gapA was transcribed in a monocistronic fashion. Since biochemical properties, such as optimal pH and affinity for glyceraldehyde-3-phosphate (GAP), were not very different between GAPDH- and NADP+-specific glyceraldehyde-3-phosphate dehydrogenase (GAPN), the flux from GAP may be greatly influenced by the relative amounts of these two enzymes. Using S. bovis JB1 as a parent, JB1gapA and JB1ldh, which overproduce GAPDH and lactate dehydrogenase (LDH), respectively, were constructed to examine the control of the glycolytic flux and lactate production. There were no significant differences in growth rates and formate-to-lactate ratios among JB1, JB1gapA, and JB1ldh grown on glucose. When grown on lactose, JB1ldh showed a much lower formate-to-lactate ratio than JB1gapA, which showed the highest NADH-to-NAD+ ratio. However, growth rates did not differ among JB1, JB1gapA, and JB1ldh. These results suggest that GAPDH is not involved in the control of the glycolytic flux and that lactate production is mainly controlled by LDH activity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号