CFTR and TNR-CFTR expression and function in the kidney |
| |
Authors: | Jackson Souza-Menezes Geórgia da Silva Feltran Marcelo M. Morales |
| |
Affiliation: | 1.Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, Barreto, Macaé, 27965-045 RJ Brazil ;2.Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil |
| |
Abstract: | The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in the kidney. CFTR mRNA is detected in all nephron segments of rats and humans and its expression is higher in the renal cortex and outer medulla than in the inner medulla. CFTR protein is detected at the apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. The localization of CFTR in the proximal tubules is compatible with that of endosomes, suggesting that CFTR might regulate pH in endocytic vesicles by equilibrating H+ accumulation due to H+-ATPase activity. Many studies have also demonstrated that CFTR also regulates channel pore opening and the transport of sodium, chloride and potassium. The kidneys also express a CFTR splicing variant, called TNR-CFTR, in a tissue-specific manner, primarily in the renal medulla. This splicing variant conserves the functional characteristics of wild-type CFTR. The functional significance of TNR-CFTR remains to be elucidated, but our group proposes that TNR-CFTR may have a basic function in intracellular organelles, rather than in the plasma membrane. Also, this splicing variant is able to partially substitute CFTR functions in the renal medulla of Cftr-/- mice and CF patients. In this review we discuss the major functions that have been proposed for CFTR and TNR-CFTR in the kidney. |
| |
Keywords: | CFTR TNR-CFTR Endocytosis Kidney Potassium channel Sodium channel |
本文献已被 SpringerLink 等数据库收录! |
|