首页 | 本学科首页   官方微博 | 高级检索  
     


Glycolate formation catalyzed by spinach leaf transketolase utilizing the superoxide radical
Authors:T Takabe  S Asami  T Akazawa
Abstract:A homogeneous preparation of transketolase was obtained from spinach leaf; the specific enzyme activity was 9.5 mumolo of glyceraldehyde-3-P formed (mg of protein)-1 min-1, when xylulose-5-P and ribose-5-P were used as the donor and acceptor, respectively, of the ketol residue. Transketolase catalyzed the formation of glycolate from fructose-6-P coupled with the O2- -generating system of xanthine-xanthine oxidase. The addition of superoxide dismutase (145 units) or 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron) (5 mM), both O2- scavengers, to the reaction system inhibited glycolate formation 72 and 58%, respectively. The reacton was not inhibited by catalase. Mannitol, an .OH scavenger, and beta-carotene and 1,4-diazobicyclo[2.2.2]octane, 1O2 scavengers, showed little or no inhibitory effects. The rate of glycolate formation catalyzed by the transketolase system was measured in a coupled reaction with a continuous supply of KO2 dissolved in dimethyl sulfoxide, used as an O2- -generating system. The optimum pH of the reaction was above pH 8.5. The second-order rate constant for the reaction between transketolase and O2-, determined by the competition for O2- between nitroblue tetrazolium (NBT) and transketolase, was 1.0 X 10(6) M-1 s-1. Transketolase showed an inhibitory effect on the O2- -dependent reduction of NBT only if the reaction mixture was previously incubated with ketol donors such as fructose-6-P, xylulose-5-P, or glycolaldehyde. The results suggest the possibility that transketolase catalyzes O2- -dependent glycolate formation under increased steady-state levels of O2- in the chloroplast stroma.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号