首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cytoplasmic domain of zebrafish myelin protein zero: adhesive role depends on beta-conformation
Authors:Luo XiaoYang  Inouye Hideyo  Gross Abby A R  Hidalgo Marla M  Sharma Deepak  Lee Daniel  Avila Robin L  Salmona Mario  Kirschner Daniel A
Institution:Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA.
Abstract:Solution spectroscopy studies on the cytoplasmic domain of human myelin protein zero (P0) (hP0-cyt) suggest that H-bonding between beta-strands from apposed molecules is likely responsible for the tight cytoplasmic apposition in compact myelin. As a follow-up to these findings, in the current study we used circular dichroism and x-ray diffraction to analyze the same type of model membranes previously used for hP0-cyt to investigate the molecular mechanism underlying the zebrafish cytoplasmic apposition. This space is significantly narrower in teleosts compared with that in higher vertebrates, and can be accounted for in part by the much shorter cytoplasmic domain in the zebrafish protein (zP0-cyt). Circular dichroism measurements on zP0-cyt showed similar structural characteristics to those of hP0-cyt, i.e., the protein underwent a beta-->alpha structural transition at lipid/protein (L/P) molar ratios >50, and adopted a beta-conformation at lower L/P molar ratios. X-ray diffraction was carried out on lipid vesicle solutions with zP0-cyt before and after dehydration to study the effect of protein on membrane lipid packing. Solution diffraction revealed the electron-density profile of a single membrane bilayer. Diffraction patterns of dried samples suggested a multilamellar structure with the beta-folded P0-cyt located at the intermembrane space. Our findings support the idea that the adhesive role of P0 at the cytoplasmic apposition in compact myelin depends on the cytoplasmic domain of P0 being in the beta-conformation.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号