首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of reactive oxygen species with ion transport mechanisms
Authors:Kourie   Joseph I.
Abstract:The use ofelectrophysiological and molecular biology techniques has shed light onreactive oxygen species (ROS)-induced impairment of surface andinternal membranes that control cellular signaling. These deleteriouseffects of ROS are due to their interaction with various ion transportproteins underlying the transmembrane signal transduction, namely,1) ion channels, such asCa2+ channels (includingvoltage-sensitive L-type Ca2+currents, dihydropyridine receptor voltage sensors, ryanodine receptorCa2+-release channels, andD-myo-inositol1,4,5-trisphosphate receptor Ca2+-release channels),K+ channels (such asCa2+-activatedK+ channels, inward and outwardK+ currents, and ATP-sensitiveK+ channels),Na+ channels, andCl- channels;2) ion pumps, such as sarcoplasmicreticulum and sarcolemmal Ca2+pumps,Na+-K+-ATPase(Na+ pump), andH+-ATPase(H+ pump);3) ion exchangers such as theNa+/Ca2+exchanger andNa+/H+exchanger; and 4) ion cotransporterssuch asK+-Cl-,Na+-K+-Cl-,andPi-Na+cotransporters. The mechanism of ROS-induced modificationsin ion transport pathways involves1) oxidation of sulfhydryl groups located on the ion transport proteins,2) peroxidation of membrane phospholipids, and 3) inhibition ofmembrane-bound regulatory enzymes and modification of the oxidativephosphorylation and ATP levels. Alterations in the ion transportmechanisms lead to changes in a second messenger system, primarilyCa2+ homeostasis, which furtheraugment the abnormal electrical activity and distortion of signaltransduction, causing cell dysfunction, which underlies pathologicalconditions.

Keywords:
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号