首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis
Authors:Elaheh Esmaeili  Mahsa Khalili  Alireza Naderi Sohi  Simzar Hosseinzadeh  Behnaz Taheri  Masoud Soleimani
Institution:1. Hematology and Cell Therapy Department, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran;2. Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran;3. Stem Cell Technology Research Center, Tehran, Iran;4. Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran;5. Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
Abstract:Magnetic iron oxide nanoparticles are a well-explored class of nanomaterials known for their high magnetization and biocompatibility. They have been used in various biomedical applications such as drug delivery, biosensors, hyperthermia, and magnetic resonance imaging (MRI) contrast agent. It is necessary to surface modify the nanoparticles with a biocompatible moiety to prevent their agglomeration and enable them to target to the defined area. Dendrimers have attracted considerable attention due to their small size, monodispersed, well-defined globular shape, and a relative ease incorporation of targeting ligands. In this study, superparamagnetic iron oxide nanoparticles were synthesized via a coprecipitation method. The magnetic nanoparticles (MNPs) had been modified with (3-aminopropyl) triethoxysilane, and then polyamidoamine functionalized MNPs had been synthesized cycling. Various characterization techniques had been used to reveal the morphology, size, and structure of the nanoparticles such as scanning electron microscopy, transmission electron microscope, X-ray diffraction analysis, and vibrating sample magnetometer, Fourier-transform infrared spectroscopy and zeta potential measurements. In addition, the cytotoxicity property of G3–dendrimer functionalized MNPs were evaluated using 3-4,5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide assay which confirmed the biocompatibility of the nanocomposites. Dendrimer functionalized MNPs are able to act as contrast agents for MRI and magnetic fluid hyperthermia mediators. A superior heat generation was achieved for the given concentration according to the hyperthermia results. MRI results show that the synthesized nanocomposites are a favorable option for MRI contrast agent. We believe that these dendrimer functionalized MNPs have the potential of integrating therapeutic and diagnostic functions in a single carrier.
Keywords:dendrimer  hyperthermia  magnetic nanoparticles  magnetic resonance imaging
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号