首页 | 本学科首页   官方微博 | 高级检索  
     


Cover Image,Volume 120, Number 8, August 2019
Authors:Yu Du PhD  Jing Li MS  Yuluan Hou MS  Chanchan Chen PhD  Weilin Long MS  Hongwei Jiang PhD
Affiliation:1. Department of Operative Dentistry and Endodontics, 2. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China;3. Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou, China;4. Department of Stomatology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
Abstract:Circular RNAs (circRNAs) are novel noncoding RNAs and play crucial roles in various biological processes. However, little is known about the functions of circRNAs in osteogenic differentiation. The current study aimed to investigate the differential expression of circRNAs in rat dental follicle cells (rDFCs) during osteogenic differentiation, identified by RNA high-throughput sequencing and quantitative real-time polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to further explore the biofunctions of circRNA biofunctions. Two hundred sixty-six differentially-expressed circRNAs that are involved in several important signaling pathways, including mitogen-activated protein kinases (MAPK) and transforming growth factor-β (TGF-β) signaling pathways were revealed. Among these, circFgfr2 and its predicted downstream targets, miR-133 and BMP6 (bone morphogenetic protein-6), were identified both in vivo and in vitro. For further validation, circFgfr2 was overexpressed in rDFCs, the results showed that the expression of miR-133 was downregulated and the expression of BMP6 was upregulated. Taken together, the results revealed the circRNA expression profiles and indicated the importance of circRNAs of rDFCs. In addition, circFgfr2 might promote osteogenesis by controlling miR-133/BMP6, which is a potential new target for the manipulation of tooth regeneration and bone formation.
Keywords:Gene Ontology  high-throughput sequencing  mitogen-activated protein kinase signaling system  microRNAs  osteogenesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号