首页 | 本学科首页   官方微博 | 高级检索  
     


Secreting oviduct epithelial cells of Coturnix coturnix japonica (QOEC) and changes to their proteome after nonviral transfection
Authors:Katarzyna Stadnicka  Michalina Dębowska  Janusz Dębski  Anna Bajek
Affiliation:1. Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, UTP University of Science and Technology, Bydgoszcz, Poland;2. Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics–Polish Academy of Sciences, Warsaw, Poland;3. Department of Tissue Engineering, Nicolaus Copernicus University, Bydgoszcz, Poland
Abstract:The quail oviduct (Coturnix c. japonica) is a natural candidate avian bioreactor, while the secretive quail oviduct epithelial cells (QOECs) are potential in vitro producers of recombinant proteins and vaccines. In view of the need for highly performing and transformable cell lines, QOEC may potentially act as an alternative bioreactor platform to the existing ones, for example, to the Chinese hamster ovary. The aim of this work was to characterize QOECs and their response to nucleofection with a nonviral plasmid DNA carrying the human interferon-α 2a gene (hIFNλ2a), in vitro. Primary QOEC cultures from laying quails (10-15 weeks old) were characterized by their proliferation rate, doubling time, and multilineage differentiation. Electroporation to cell nuclei (nucleofection) was used to deliver nonviral plasmid DNA containing a reporter GFP and hIFN under the ovalbumin promoter. The posttransfection analysis included polymerase chain reaction, Western blot analysis, and liquid chromatography coupled to tandem mass spectrometry. QOEC showed a typical epithelial characteristic in a primary 2D monolayer culture system and retained secretive potential up to the first passage. QOEC showed differentiation into osteoblastic lineage after stimulation. The nucleofection mean efficiency was low (2.3%). Differences of up to 10% in the proteomic profiles between nontransfected and transfected QOEC were found, the most important of these were related to the absence of keratins and cell-adhesion proteins in the transfected QOEC. Concluding, with the practical information provided here, QOEC have the potential to serve as an avian secreting cellular platform. QOEC may be further transformed to cell lineage to meet the requirement for a stable, electrocompetent, and transfectable model. The first proteomic comparison of QOEC delivered in this study showed, in the majority, a stable proteome of the nontransfected vs transfected QOEC.
Keywords:cell proteome  nonviral transfection  nucleofection  oviduct epithelial cells  quail
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号