首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Silencing lncRNA PVT1 inhibits activation of astrocytes and increases BDNF expression in hippocampus tissues of rats with epilepsy by downregulating the Wnt signaling pathway
Authors:Teng Zhao  Ying Ding  Min Li  Chunkui Zhou  Weihong Lin
Institution:1. Department of Neurology, The First Hospital of Jilin University, Changchun, China;2. Department of Radiology, The First Hospital of Jilin University, Changchun, China
Abstract:The aim of this study is to investigate the effects of long-chain noncoding RNA plasmacytoma variant translocation 1 (PVT1) on the activation of astrocytes and the expression of brain-derived neurotrophic factor (BDNF) in hippocampus tissues of epileptic rats. The epilepsy rat model was induced by intraperitoneal injection of lithium chloride–pilocarpine. Successfully modeled rats were grouped, and their spatial learning and memory, neuronal loss, number of TdT-mediated dUTP nick labeling (TUNEL)-positive cells, and the expression of cleaved-caspase-3, pro-caspase-3, Bax, Bcl-2, GFAP, BDNF, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, axin, and cyclin D1 in hippocampus tissues were evaluated. Increased expression of PVT1 was found in hippocampus tissues of epileptic rats. Silencing of PVT1 improved spatial learning and memory, decreased neuronal loss, decreased the number of TUNEL-positive cell, decreased the expression of cleaved-caspase-3 and Bax while increased pro-caspase-3 and Bcl-2 expression, decreased the expression of GFAP, increased the expression of BDNF, decreased the expression of TNF-α, IL-1β, and IL-6, and decreased the expression of axin and cyclin D1 in hippocampus tissues in epileptic rats. Our study provides evidence that the inhibition of PVT1 may decrease the loss of neurons, inhibit the activation of astrocytes, and increase the expression of BDNF in hippocampus by downregulating the Wnt signaling pathway.
Keywords:astrocytes  epilepsy  hippocampal  long-chain noncoding RNA  neuron  PVT1  Wnt signaling pathway
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号