Knockdown of DGCR5 enhances the radiosensitivity of human laryngeal carcinoma cells via inducing miR-195 |
| |
Authors: | Tian Tang Guang Shan Feng Zeng |
| |
Affiliation: | Department of Oncology, RenMin Hospital of Wuhan University, Wuhan, China |
| |
Abstract: | Long noncoding RNAs (lncRNAs) exert critical roles in the development of various cancers, including human laryngeal cancer. Radioresistance contributes to the predominant causes of laryngeal cancer recurrence after radiotherapy. The aim of our study was to investigate the association of dysregulated lncRNA and radiation resistance in human larynx squamous carcinoma. Here, we investigated the biological roles of lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) in radioresistance of human laryngeal cancer. Two human larynx squamous carcinoma cell lines (Hep-2 and Hep-2R), with different radiosensitivities in vitro were used in the present study. We observed that DGCR5 was significantly upregulated in Hep-2R cells. Inhibition of DGCR5 by LV-shDGCR5 transfection restrained Hep-2R cell proliferation and sensitized cells to radiation. Reversely, overexpression of DGCR5 exhibited an opposite phenomenon in vitro. In addition, microRNA (miR)-195 was predicted as a direct downstream target of DGCR5. Dual-luciferase reporter and RNA immunoprecipitation assays verified the direct interaction between them. Meanwhile, miR-195 was observed to be reduced in Hep-2R cells and miR-195 mimics repressed Hep-2 cell growth. Moreover, radiosensitivity of Hep-2R cells was greatly enhanced by overexpression of miR-195, which could be reversed by upregulation of DGCR5. Finally, in vivo experiments were used to validate that knockdown of DGCR5 suppressed laryngeal carcinoma via targeting miR-195. In conclusion, we indicated that DGCR5 could contribute to the radioresistance of human laryngeal carcinoma cells via sponging miR-195. |
| |
Keywords: | DGCR5 laryngeal carcinoma miR-195 radioresistance |
|
|