首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Novel pathways involved in cisplatin resistance identified by a proteomics approach in non-small-cell lung cancer cells
Authors:Maria Rita Milone  Rita Lombardi  Maria Serena Roca  Francesca Bruzzese  Laura Addi  Biagio Pucci  Alfredo Budillon
Institution:1. Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS-Fondazione G. Pascale, Napoli, Italy;2. Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS-Fondazione G. Pascale, Napoli, Italy

Biagio Pucci and Alfredo Budillon are co-last authors.

Abstract:Although platinum-based chemotherapy remains the standard-of-care for most patients with advanced non-small-cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP-resistant (CPr-A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr-A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum-resistance.
Keywords:cisplatin resistance  epithelial-to-mesenchymal transition  NSCLC  proteomics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号