首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Formation,structure, and spectrophotometry of air-water interface films containing rhodopsin
Authors:Juan I Korenbrot  Mary-Jean Pramik
Institution:(1) Department of Physiology and Biochemistry, University of California School of Medicine, 94143 San Francisco, California
Abstract:Summary Air-water interface films of cattle rhodopsin and defined lipids are formed without the use of organic solvents by a method in which vesicle membranes consisting of egg phosphatidyl choline and purified rhodopsin are osmotically shocked at the interface. Lipid and protein molecules organize as insoluble films at the interface. The structure of these films varies with the lipid to protein mole ratio of the source vesicle membranes. Electron microscopic observations reveal that films formed with membranes of 150ratio1 mole ratio consist of nonoverlapping, randomly distributed vesicle membrane fragments separated by a lipid monolayer. These membrane fragments exist as single sheets on the water surface and occupy approximately 35% of this surface. Essentially all the rhodopsin molecules at the interface are spectroscopically intact and are contained within the membrane fragments. The visible absorption spectrum of the interface films is identical to that of suspensions of rod disc membranes. Moreover, flash illumination of rhodopsin in air-dried multilayers formed from the interface films results in the formation of a stable MetarhodopsinI intermediate (lambdamaxsime480 nm) which can be fully bleached by increasing the relative humidity of the multilayers or can be photoconverted into rhodopsin and, presumably, isorhodopsin. Furthermore, rhodopsin is chemically regenerable at the air-water interface. Bleached rhodopsin can generate dark rhodopsin at the interface in the presence of 11-cis retinal in the aqueous subphase. Thus, the spectroscopic structure and the chemical regenerability function of rhodopsin in these interface films are indistinguishable from those exhibited by the protein in intact rod disc membranes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号