首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Role of Glycollic Acid in the Photoassimilation of Acetate by Chlorella pyrenoidosa
Authors:GOULDING  K H; MERRETT  M J
Abstract:The kinetics of 3H-acetate assimilation by Chlorella pyrenoidosain the light were examined. The primary products of assimilationwere glycollate and succinate. After 10 sec glycollate contained45 per cent and succinate 25 per cent of the tritium incorporatedby the cells. The percentage of the total tritium in glycollateand succinate fell with time while that in citrate increased.Initially the specific activities (µc of 3H per µmoleof acid) of succinate and glycollate were greater than citrate.When 3H-14C-2-acetate was added to the cells, total dpm for3H and 14C in glycollate rapidly reached a steady state andgave a 3H/14C ratio of 10, compared with a 3H/14C ratio of 4in the acetate. This 3H/14C ratio in glycollate is found because3H is derived from 3H-14C-2-acetate and because the 14C is dilutedwith cold carbon from elsewhere. The addition of 14CO2 at thesame time as 3H-14C acetate decreased the 3H/14C ratio in glycollatebut incorporation of 14C from 14CO2 into glycollate was slowerthan incorporation from 14C-2-acetate. Although 14C from acetaterapidly appeared in glycollate, 14C-labelled glyoxylate wasnot detected. The 3H/14C ratio observed in glycollate rulesout formation of glycollate from acetate via glycoaldehyde.The available evidence did not support glycollate formationvia the Calvin cycle. 14C from 14C-Z-acetate appeared in glycollatebefore it did in phosphoglyceric acid. Total dpm for 3H, 14C,and 3H/l4C ratio in Calvin cycle intermediates were not in equilibriumwith glycollic acid.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号