首页 | 本学科首页   官方微博 | 高级检索  
   检索      

Rac1蛋白活化加速缺氧诱导的人血管内皮细胞衰老
作者姓名:Han YL  Yu HB  Yan CH  Kang J  Meng ZM  Zhang XL  Li SH  Wang SW
作者单位:1. 沈阳军区总医院全军心血管病研究所心内科,沈阳,110016
2. 美国Robert Wood Johnson医学院病理实验科,新泽,西州 08854
3. 解放军总医院老年心血管病研究所,北京,100853
基金项目:国家重点基础研究发展计划(973计划)
摘    要:为阐明Rac1蛋白在人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)衰老中的作用及分子机制,我们采用持续缺氧的方法诱导内皮细胞衰老,检测缺氧前后内皮细胞衰老标志基因SA-β-Gal和PAI-1的表达、细胞周期分布和细胞增殖情况,同时分析缺氧前后细胞内Rac1蛋白的表达.结果显示,持续缺氧96 h后,HUVECs体积变大,细胞浆内颗粒和空泡增多,SA-β-Gal活性明显增加,PAI-1基因表达升高,细胞发生G1期阻滞,细胞增殖受抑,活化型Rac1蛋白表达上调,提示持续缺氧诱导的内皮细胞衰老可能与Rac1蛋白的活化有关.为进一步明确内皮细胞衰老与Rac1蛋白的关系,应用逆转录病毒将持续活化型Rac1(V12Rac1)和主导抑制型Rac1(N17Rac1)基因分别瞬时感染HUVECs,比较三种HUVECs(HUVECs,V12Rac1-HUVECs,N17Rac1-HUVECs)缺氧后的衰老变化,并分析其下游调控分子--血清反应因子(serum response factor,SRF)的表达和定位变化.研究发现,缺氧培养V12Rac1-HUVECs 48 h即可引起细胞衰老,表现为SA-β-Gal活性明显增加,PAI-1基因表达升高,细胞出现明显的G1期阻滞并且细胞增殖受抑,其改变与缺氧96 h的HUVECs相似;而N17Rac1明显抑制缺氧引起的内皮细胞衰老发生.上述结果说明,Rac1蛋白活化可以加速缺氧诱导的内皮细胞衰老,而抑制Rac1蛋白的活性则可抑制缺氧诱导的内皮细胞衰老.为进一步研究Rac1蛋白引起内皮细胞衰老的机制,通过免疫荧光染色及Western blot分析检测三种细胞缺氧处理后SRF的表达,发现:与HUVECs细胞比较,V12Rac1引起缺氧48 h HUVECs核蛋白中SRF的表达明显下降,SRF入核转位受到明显抑制;而N17Rac1感染后,缺氧HUVECs细胞核蛋白中SRF表达明显增多.上述结果提示:缺氧状态下Rac1蛋白活化能够明显加速HUVECs衰老,而抑制Rac1蛋白活性则明显抑制缺氧诱导的HUVECs衰老,SRF蛋白的核转位活化参与了Rac1蛋白调控HUVECs衰老的发生.

关 键 词:缺氧  内皮细胞  衰老
收稿时间:2005-11-14
修稿时间:2006-04-09

Rac1 accelerates endothelial cell senescence induced by hypoxia in vitro
Han YL,Yu HB,Yan CH,Kang J,Meng ZM,Zhang XL,Li SH,Wang SW.Rac1 accelerates endothelial cell senescence induced by hypoxia in vitro[J].Acta Physiologica Sinica,2006,58(3):207-216.
Authors:Han Ya-Ling  Yu Hai-Bo  Yan Cheng-Hui  Kang Jian  Meng Zi-Min  Zhang Xiao-Lin  Li Shao-Hua  Wang Shi-Wen
Institution:Department of Cardiology, General Hospital of Shenyang, The Institute of Cardiovascular Research, PLA, Shenyang 110016, China. hanyal@mail.sy.ln.cn
Abstract:To investigate the role and mechanism of Rac1 protein in the process of the human umbilical vein endothelial cell (HUVEC) senescence, we used hypoxia as a model for modulating HUVECs entering replicative senescence in vitro. Premature senescence of HUVECs was evidenced by detecting the SA-beta-Gal activity and PAI-1 expression. Meanwhile, cell cycle distribution and cell proliferation rate were investigated by flow cytometry assay and BrdU staining. The results indicated that the HUVECs became enlarged and flattened, both SA-beta-Gal activity and PAI-1 expression increased obviously, while cell proliferation was inhibited and G(1) phase cell cycle arresting occurred when HUVECs were treated with continued hypoxia for 96 h. Accompanied with these changes, the expression of activated Rac1 increased obviously in cells after hypoxia. All these observations suggested that endothelial senescence could be induced by continued hypoxia and it might correlate with the activity of Rac1. To further define the relationship between Rac1 and HUVEC senescence, HUVECs were transiently infected with the constitutively active form of Rac1 (V12Rac1) or dominant negative form of Rac1 (N17Rac1) using retrovirus vector pLNCX-V12Rac1 or pLNCX-N17Rac1. We observed the changes of these three kinds of HUVECs (HUVECs, N17Rac1-HUVECs, V12Rac1-HUVECs) after hypoxia for 48 h and 96 h, the expression and localization of serum response factor (SRF), which is one of the downstream signal molecules of Rac1, were also investigated. The results obtained indicated that after continued hypoxia for 48 h, HUVECs infected by V12Rac1 showed obvious senescence accompanied with SA-beta-Gal activation, PAI-1 expression increase, G(1) phase arrest and cell proliferation inhibition which were similar to HUVECs after continued 96-hour hypoxia treatment, while the senescence of HUVECs infected by N17Rac1 was significantly inhibited even if the cells were exposed to hypoxia for more than 96 h. All the results identified that the activation of Rac1 might accelerate HUVEC senescence induced by hypoxia and that inactivation of Rac1 could partly block the cell senescence. To further investigate the mechanism of HUVEC senescence induced by Rac1, we detected the expression of total SRF (tSRF) and nuclear SRF (nSRF) in these three kinds of HUVECs by immunofluorescent analysis and Western blot assay after hypoxia. The results showed that the expression of nSRF decreased obviously and the nuclear translocation of SRF was inhibited in HUVECs infected by V12Rac1 compared with those in the normal HUVECs. In contrast, the expression of nSRF increased obviously in the HUVECs infected by N17Rac1. These results suggest that activation of Rac1 accelerates endothelial cell senescence and inhibition of Rac1 activity prevents HUVECs from entering senescence induced by hypoxia, while the nuclear translocation of SRF regulated by Rac1 might play an important role in the process of senescence.
Keywords:Rac1
本文献已被 CNKI 维普 万方数据 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号