首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine
Authors:Y Kuroki  T Akino
Institution:Department of Biochemistry, Sapporo Medical College, Japan.
Abstract:Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed. From these data we conclude that 1) SP-A specifically and strongly binds dipalmitoylphosphatidylcholine, 2) SP-A binds the nonpolar group of phospholipids, 3) the second positioned palmitate is involved in dipalmitoylphosphatidylcholine binding, and 4) the specificities of polar groups of dipalmitoylglycerophospholipids also appear to be important for SP-A binding, 5) the phospholipid binding activity of SP-A is dependent upon calcium ions and the integrity of the collagenous domain of SP-A, but not on the oligosaccharide moiety of SP-A. SP-A may play an important role in the regulation of recycling and intra- and extracellular movement of dipalmitoylphosphatidylcholine.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号