首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An electron transfer dependent membrane potential in chromaffin-vesicle ghosts
Authors:G J Harnadek  R E Callahan  A R Barone  D Njus
Abstract:Adrenal medullary chromaffin-vesicle membranes contain a transmembrane electron carrier that may provide reducing equivalents for intravesicular dopamine beta-hydroxylase in vivo. This electron transfer system can generate a membrane potential (inside positive) across resealed chromaffin-vesicle membranes (ghosts) by passing electrons from an internal electron donor to an external electron acceptor. Both ascorbic acid and isoascorbic acid are suitable electron donors. As an electron acceptor, ferricyanide elicits a transient increase in membrane potential at physiological temperatures. A stable membrane potential can be produced by coupling the chromaffin-vesicle electron-transfer system to cytochrome oxidase by using cytochrome c. The membrane potential is generated by transferring electrons from the internal electron donor to cytochrome c. Cytochrome c is then reoxidized by cytochrome oxidase. In this coupled system, the rate of electron transfer can be measured as the rate of oxygen consumption. The chromaffin-vesicle electron-transfer system reduces cytochrome c relatively slowly, but the rate is greatly accelerated by low concentrations of ferrocyanide. Accordingly, stable electron transfer dependent membrane potentials require cytochrome c, oxygen, and ferrocyanide. They are abolished by the cytochrome oxidase inhibitor cyanide. This membrane potential drives reserpine-sensitive norepinephrine transport, confirming the location of the electron-transfer system in the chromaffin-vesicle membrane. This also demonstrates the potential usefulness of the electron transfer driven membrane potential for studying energy-linked processes in this membrane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号