首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increased DNA single-strand break joining activity in UV-irradiated CD34+ versus CD34- bone marrow cells
Authors:Myllyperkiö M H  Vilpo J A
Institution:Laboratory of Molecular Hematology, Department of Clinical Chemistry, Tampere University Hospital and Tampere University Medical School, PO Box 2000, FIN-33521, Tampere, Finland.
Abstract:The kinetics of UV-irradiation-induced (254 nm) DNA single-strand breaks (SSBs) were studied in single human hematopoietic cells using alkaline comet assay. Three cell populations were investigated: (i) Bone marrow mononuclear cells (BMMNCs) isolated by density gradient centrifugation, (ii) CD34- cells, and (iii) CD34+ cells. The two latter populations were purified from BMMNCs by negative and positive selection, respectively, using anti-CD34 immunobeads. SSBs were induced faster by 10 and 50 J/m2 than by 2 J/m2 and those caused by 2 J/m2 were joined faster that those caused by 10 or 50 J/m2. During the first 1.5 h after irradiation with a dose of 10 J/m2, CD34+ cells joined SSBs faster than did BMMNCs. The superior joining capacity of CD34+ cells was further substantiated with a higher UV dose. The comet lengths, indicating the extent of DNA repair, among 8/8 study subjects were shorter in CD34+ than in CD34- cells when assessed 24 h after a dose of 50 J/m2. Overall, the comet lengths at 24 h after irradiation were: CD34+ cells; 39+/-12 *m, and CD34- cells; 65+/-18 *m (8 subjects, 50 cells measured from each donor, mean+/-S.D.; p=0.0087, Mann-Whitney U-test). These results strongly suggest that nucleotide excision repair, the major mechanism responsible for the repair of UV-irradiation-induced DNA lesions in mammalian cells, is increased in CD34+ cells compared with CD34- cells and with BMMNCs. These results may have implications in stem cell purging, clinical chemotherapy and carcinogenesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号