首页 | 本学科首页   官方微博 | 高级检索  
     


A robust deep attention dense convolutional neural network for plant leaf disease identification and classification from smart phone captured real world images
Affiliation:1. Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, India;2. Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India;1. Research Scholar, Department of Computer Science and Engineering, School of Engineering and Technology, CHRIST (Deemed to be University), Bangalore 560074, Karnataka, India
Abstract:Plant diseases cause significant food loss and hence economic loss around the globe. Therefore, automatic plant disease identification is a primary task to take proper medications for controlling the spread of the diseases. Large variety of plants species and their dissimilar phytopathological symptoms call for the implementation of supervised machine learning techniques for efficient and reliable disease identification and classification. With the development of deep learning strategies, convolutional neural network (CNN) has paved its way for classification of multiple plant diseases by extracting rich features. However, several characteristics of the input images especially captured in real world environment, viz. complex or indistinguishable background, presence of multiple leaves with the diseased leaf, small lesion area, solemnly affect the robustness and accuracy of the CNN modules. Available strategies usually applied standard CNN architectures on the images captured in the laboratory environment and very few have considered practical in-field leaf images for their studies. However, those studies are limited with very limited number of plant species. Therefore, there is need of a robust CNN module which can successfully recognize and classify the dissimilar leaf health conditions of non-identical plants from the in-field RGB images. To achieve the above goal, an attention dense learning (ADL) mechanism is proposed in this article by merging mixed sigmoid attention learning with the basic dense learning process of deep CNN. The basic dense learning process derives new features at higher layer considering all lower layer features and that provides fast and efficient training process. Further, the attention learning process amplifies the learning ability of the dense block by discriminating the meaningful lesion portions of the images from the background areas. Other than adding an extra layer for attention learning, in the proposed ADL block the output features from higher layer dense learning are used as an attention mask to the lower layers. For an effective and fast classification process, five ADL blocks are stacked to build a new CNN architecture named DADCNN-5 for obtaining classification robustness and higher testing accuracy. Initially, the proposed DADCNN-5 module is applied on publicly available extended PlantVillage dataset to classify 38 different health conditions of 14 plant species from 54,305 images. Classification accuracy of 99.93% proves that the proposed CNN module can be used for successful leaf disease identification. Further, the efficacy of the DADCNN-5 model is checked after performing stringent experiments on a new real world plant leaf database, created by the authors. The new leaf database contains 10,851 real-world RGB leaf images of 17 plant species for classifying their 44 distinguished health conditions. Experimental outcomes reveal that the proposed DADCNN-5 outperforms the existing machine learning and standard CNN architectures, and achieved 97.33% accuracy. The obtained sensitivity, specificity and false positive rate values are 96.57%, 99.94% and 0.063% respectively. The module takes approximately 3235 min for training process and achieves 99.86% of training accuracy. Visualization of Class activation mapping (CAM) depicts that DADCNN-5 is able to learn distinguishable features from semantically important regions (i.e. lesion regions) on the leaves. Further, the robustness of the DADCNN-5 is established after experimenting with augmented and noise contaminated images of the practical database.
Keywords:Convolutional neural network  Attention learning  Dense learning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号