首页 | 本学科首页   官方微博 | 高级检索  
     


Double enhanced residual network for biological image denoising
Affiliation:1. School of Computer and Information Technology, Liaoning Normal University, 116081, China;2. Department of Information Technology, College of Technology and Design, University of Economics Ho Chi Minh City, Ho Chi Minh City, Viet Nam
Abstract:With the achievements of deep learning, applications of deep convolutional neural networks for the image denoising problem have been widely studied. However, these methods are typically limited by GPU in terms of network layers and other aspects. This paper proposes a multi-level network that can efficiently utilize GPU memory, named Double Enhanced Residual Network (DERNet), for biological-image denoising. The network consists of two sub-networks, and U-Net inspires the basic structure. For each sub-network, the encoder-decoder hierarchical structure is used for down-scaling and up-scaling feature maps so that GPU can yield large receptive fields. In the encoder process, the convolution layers are used for down-sampling to obtain image information, and residual blocks are superimposed for preliminary feature extraction. In the operation of the decoder, transposed convolution layers have the capability to up-sampling and combine with the Residual Dense Instance Normalization (RDIN) block that we propose, extract deep features and restore image details. Finally, both qualitative experiments and visual effects demonstrate the effectiveness of our proposed algorithm.
Keywords:Biological image denoising  Residual learning  Deep convolutional encoder-decoder networks
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号