首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of Photosystem-II activity
Authors:Michel Havaux  Alexis Davaud
Institution:(1) Département de Physiologie Végétale et Ecosystèmes, CEA-Sciences du Vivant, Centre d'Etudes de Cadarache, F-13108 Saint-Paul-lez-Durance, France
Abstract:When 23 °C-grown potato leaves (Solanum tuberosum L.) were irradiated at 23 °C with a strong white light, photosynthetic electron transport and Photosystem-II (PS II) activity were inhibited in parallel. When the light treatment was given at a low temperature of 3 °C, the photoinhibition of photosynthesis was considerably enhanced, as expected. Surprisingly, no such stimulation of photoinhibition was observed with respect to the PS II function. A detailed functional analysis of the photosynthetic apparatus, using in-vivo fluorescence, absorbance, oxygen and photoacoustic measurements, and artificial electron donors/acceptors, showed a pronounced alteration of PS I activity during light stress at low temperature. More precisely, it was observed that both the pool of photooxidizeable reaction center pigment (P700) of PS I and the efficiency of PS I to oxidize P700 were dramatically reduced. Loss of P700 activity was shown to be essentially dependent on atmospheric O2 and to require a continued flow of electrons from PS II, suggesting the involvement of the superoxide anion radical which is produced by the interaction of O2 and the photosynthetic electron-transfer chain through the Mehler reaction. Mass spectrometric measurements of O2 exchange by potato leaves under strong illumination did not reveal, however, any stimulation of the Mehler reaction at low temperature, thus leading to the conclusion that O2 toxicity mainly resulted from a chilling-induced inhibition of the scavenging system for O2-radicals. Support for this interpretation was provided by the light response of potato leaves infiltrated with an inhibitor (diethyldithiocarbamate) of the chloroplastic Cu-Zn superoxide dismutase. It was indeed possible to simulate the differential inhibition of the PS II photochemical activity and the linear electron transport observed during light stress at low temperature by illuminating at 23 °C diethyldithiocarbamate-poisoned leaves. The experimental data presented here suggests that (i) the previously reported resistance of PS I to photoinhibition damage in-vivo is not an intrinsic property of PS I but results from efficient protective systems against O2 toxicity, (ii) PS I is photoinhibited in chilled potato leaf due to the inactivation of this PS I defence system and (iii) PS I is more sensitive to superoxide anion radicals than PS II.Abbreviations PS - Photosystem - E - Emerson enhancement - phgr open p and phgrP maximal and actual quantum yields of PS II photochemistry - DDC - diethyldithiocarbamate - QA and QB - primary and secondary (quinone) electron acceptors of PS II - P680 and P700 - reaction center pigments of PS II and PS I, respectively - SOD - superoxide dismutase
Keywords:chilling temperature  oxygen toxicity  photoinhibition  photosynthesis  photosystems  superoxide dismutase
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号