首页 | 本学科首页   官方微博 | 高级检索  
     


Differential scanning calorimetry studies of the inverse temperature transition of the polypentapeptide of elastin and its analogues
Authors:C H Luan  R D Harris  K U Prasad  D W Urry
Affiliation:Laboratory of Molecular Biophysics, School of Medicine, University of Alabama at Birmingham, 35294.
Abstract:Differential scanning calorimetry studies have been carried out on the sequential polypeptide of elastin, (L-Val1-L-Pro2-Gly3-L-Val4-Gly5)n, abbreviated as PPP, and its more hydrophobic analogues (L-Leu1-L-Pro2-Gly3-L-Val4-Gly5)n, referred to as Leu1-PPP, and (L-Ile1-L-Pro2-Gly3-L-Val4-Gly5)n, referred to as Ile1-PPP Consistent with inverse temperature transitions, the temperatures of the transitions for which maximum heat absorption occurs are inversely proportional to the hydrophobicities of the polypentapeptides (31 degrees C for PPP, 16 degrees C for Leu1-PPP, and 12 degrees C for Ile1-PPP), and the endothermic heats of the transitions are small and increase with increasing hydrophobicity, i.e., 1.2, 2.9, and 3.0 kcal/mol pentamer for PPP, Leu1-PPP, and Ile1-PPP, respectively. Previous physical characterizations of the polypentapeptides have demonstrated the occurrence of an inverse temperature transition since increase in order, as the temperature is raised above that of the transition, has been repeatedly observed using different physical characterizations. Furthermore, the studies demonstrated identical conformations for PPP and Il21-PPP above and below the transition. Both heats and temperatures of the transitions vary with hydrophobicity, but not in simple proportionality.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号