首页 | 本学科首页   官方微博 | 高级检索  
     


Human von Willebrand factor: a multivalent protein composed of identical subunits
Authors:M W Chopek  J P Girma  K Fujikawa  E W Davie  K Titani
Abstract:A large-scale method for the isolation of von Willebrand factor (vWF) from human factor VIII concentrates was developed in order to study the structure of this protein and its platelet binding activity. vWF is composed of a number of glycoprotein subunits that are linked together by disulfide bonds to form a series of multimers. These multimers appear to contain an even number of subunits of 270K. Two minor components of Mr 140K and 120K were also identified, but these chains appear to result from minor proteolysis. The smallest multimer of vWF contained nearly equimolar amounts of the 270K, 140K, and 120K subunits, while the largest multimers contained less than 20% of the two minor components. Amino acid sequence analysis, amino acid composition, and cleavage by cyanogen bromide indicate that the 270K subunits are identical and each is a single polypeptide chain with an amino-terminal sequence of Ser-Leu-Ser-Cys-Arg-Pro-Pro-Met-Val-Lys and a carboxyl-terminal sequence of Glu-Cys-Lys-Cys-Ser-Pro-Arg-Lys-Cys-Ser-Lys. Platelet binding in the presence of ristocetin was 8-fold greater with multimers larger than five (i.e., containing more than 10 subunits of 270K) as compared to multimers less than three (containing less than six subunits of 270K). However, partially reduced vWF (Mr 500K), regardless of whether it was prepared from large or small molecular weight multimers, gave platelet binding similar to that of the smallest multimers. Likewise, partial proteolysis by elastase, thermolysin, trypsin, or chymotrypsin produced small "multimer-like" proteins with platelet binding properties similar to either partially reduced vWF or to the smallest multimers. We conclude that human vWF contains identical 270K subunits assembled into a multivalent structure. Disassembly by either partial reduction or partial proteolysis produces essentially monovalent protein with platelet binding properties similar to that of the smallest multimers. Multivalency is likely the primary factor responsible for the increase in biological activity with multimer size.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号