首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural and Thermodynamic Properties of Septin 3 Investigated by Small-Angle X-Ray Scattering
Authors:Maria?Grazia Ortore  Joci?NA Macedo  Ana?Paula?U Araujo  Claudio Ferrero  Paolo Mariani  Francesco Spinozzi  Rosangela Itri
Institution:1.Dipartimento di Scienze della Vita e dell’Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy;2.Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil;3.European Synchrotron Radiation Facility, Grenoble, France;4.Instituto de Física da Universidade de São Paulo, São Paulo, Brazil
Abstract:Septins comprise a family of proteins involved in a variety of cellular processes and related to several human pathologies. They are constituted by three structural domains: the N- and C-terminal domains, highly variable in length and composition, and the central domain, involved in the guanine nucleotide (GTP) binding. Thirteen different human septins are known to form heterogeneous complexes or homofilaments, which are stabilized by specific interactions between the different interfaces present in the domains. In this work, we have investigated by in-solution small-angle x-ray scattering the structural and thermodynamic properties of a human septin 3 construct, SEPT3-GC, which contains both of both interfaces (G and NC) responsible for septin-septin interactions. In order to shed light on the role of these interactions, small-angle x-ray scattering measurements were performed in a wide range of temperatures, from 2 up to 56°C, both with and without a nonhydrolysable form of GTP (GTPγS). The acquired data show a temperature-dependent coexistence of monomers, dimers, and higher-order aggregates that were analyzed using a global fitting approach, taking into account the crystallographic structure of the recently reported SEPT3 dimer, PDB:3SOP. As a result, the enthalpy, entropy, and heat capacity variations that control the dimer-monomer dissociation equilibrium in solution were derived and GTPγS was detected to increase the enthalpic stability of the dimeric species. Moreover, a temperature increase was observed to induce dissociation of SEPT3-GC dimers into monomers just preceding their reassembling into amyloid aggregates, as revealed by the Thioflavin-T fluorescence assays.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号