首页 | 本学科首页   官方微博 | 高级检索  
     


Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet
Affiliation:1. Inserm UMRS1149, UFR de Médecine Paris 7, Université Paris Diderot, Sorbonne Paris Cité, Paris, France;2. Research Unit on the Antioxidant compounds, Oxidative stress, Trace elements and Metabolic diseases, ESSTST, Tunis, Tunisia;3. Food Biochemistry Laboratory, INSAT, Tunis, Tunisia;1. Institute of Nutrition, China Medical University, Taichung 404, Taiwan;2. Department of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung 413, Taiwan;3. Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan;4. Department of Biotechnology, Asia University, Taichung 413, Taiwan;5. Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
Abstract:Green tea containing polyphenols exerts antidiabetic and antiobesity effects, but the mechanisms involved are not fully understood. In this study, we first analyzed and compared polyphenol compounds [epigallocatechin gallate (EGCG), epigallocatechin (EGC)] in decoction of green tea leaves versus usual green tea extracts. Second, the effects of acute (30 min) or chronic (6 weeks) oral administration of green tea decoction (GTD) on intestinal glucose absorption were studied in vitro in Ussing chamber, ex vivo using isolated jejunal loops and in vivo through glucose tolerance tests. Finally, we explore in rat model fed normal or high-fat diet the effects of GTD on body weight, blood parameters and on the relative expression of glucose transporters SGLT-1, GLUT2 and GLUT4. GTD cooked for 15 min contained the highest amounts of phenolic compounds. In fasted rats, acute administration of GTD inhibited SGLT-1 activity, increased GLUT2 activity and improved glucose tolerance. Similarly to GTD, acute administration of synthetic phenolic compounds (2/3 EGCG+1/3 EGC) inhibited SGLT-1 activity. Chronic administration of GTD in rat fed high-fat diet reduced body weight gain, circulating triglycerides and cholesterol and improved glucose tolerance. GTD-treated rats for 6 weeks display significantly reduced SGLT-1 and increased GLUT2 mRNA levels in the jejunum mucosa. Moreover, adipose tissue GLUT4 mRNA levels were increased. These results indicate that GTD, a traditional beverage rich in EGCG and EGC reduces intestinal SGLT-1/GLUT2 ratio, a hallmark of regulation of glucose absorption in enterocyte, and enhances adipose GLUT4 providing new insights in its possible role in the control of glucose homeostasis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号