首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calorimetric analysis of aspartate transcarbamylase from Escherichia coli: binding of cytosine 5'-triphosphate and adenosine 5'-triphosphate.
Authors:N M Allewell  J Friedland  K Niekamp
Abstract:The binding of CTP and ATP to aspartate transcarbamylase at pH 7.8 and 8.5 at 25 degrees has been investigated by equilibrium dialysis and flow microcalorimetry. The binding isotherms for CTP at both pH 7.8 and 8.5 and ATP AT PH 8.5 can be fit by a model which assumes three tight, three moderately tight, and six weak binding sites. The binding isotherms for ATP at pH 7.8 are best fit by a model which assumes six tight and six weaker sites. Both finite differenceH binding and finite differenceS binding are negative for both nucleotides at both pH values, so that the binding is enthalpy driven. For both nucleotides, finite differenceH is the same for the first two classes of binding sites, implying that the difference in the dissociation constants of these two classes of sites is the result of entropic effects. Direct pH measurements and calorimetric measurements in two buffers with very different heats of ionization (Tris and Hepes) indicate that the binding of both nucleotides is accompanied by the binding of protons. In the pH range 6.7-8.4, the number of moles of protons bound per mole of nucleotide increases as the pH decreases.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号