Abstract: | In mammals, circadian rhythms of locomotor activity and many other behavioral and physiological functions are controlled by an endogenous pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Among various other afferents, the SCN receives a dense serotonergic input from the mesencephalic raphe complex. Experimental evidence obtained so far in Syrian hamsters suggests that serotonin (5-HT) mimics the effect of nonphotic stimuli during subjective day and modulates photic input to the SCN during subjective night. These findings are consistent with a putative role of serotonergic pathways in the transmission of the state of arousal to the SCN. In this paper, we review recent evidence for different modes of 5-HT action and/or the involvement of different 5-HT receptor subtypes in hamsters and rats. In intact rats, 5-HT agonists induce photic-like phase shifts of locomotor activity and melatonin rhythms as well as c-Fos expression in the ventral SCN. These results suggest a role for 5-HT in the transmission of photic rather than nonphotic information to the rat SCN. Such a function of 5-HT would also explain why the circadian system of rats is less sensitive or even insensitive to nonphotic stimuli. |