首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L.
Authors:Furong Wang  Zhenzhen Xu  Ran Sun  Yongchao Gong  Guodong Liu  Jingxia Zhang  Liuming Wang  Chuanyun Zhang  Shoujin Fan  Jun Zhang
Affiliation:1. Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People’s Republic of China
2. Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, People’s Republic of China
Abstract:We crossed Luyuan343, containing the Gossypium barbadense (GB) genomic component, with Lumianyan22, a high-yielding Gossypium hirsutum (GH) variety, to evaluate the introgressive exogenous genomic components that contribute to fiber quality in upland cotton. A total of 158 of 334 mapping simple sequence repeats (SSR) loci screened from 18,467 SSR primer pairs were identified as putative GB introgression loci. Twenty-four quantitative trait loci (QTLs) for fiber quality and lint percentage were detected by WinQTLCart 2.5 based on three phenotypic datasets collected over 2 years in two different locations. Of these QTLs, 20 were mapped in the introgression chromosomal regions; the GB alleles contributed to improved fiber quality at eight loci, which were located in the introgression segments of chromosome (Chr.) 3, Chr.7 and Chr.25. A total of eight digenic epistasis and nine significant QTL × environment (QE) interactions were identified by QTLNetwork-2.2. Fiber elongation was found to be most easily influenced by environment since all QTLs for this trait showed significant QE interaction with large effects. Fiber length, fiber strength, and lint percentage were scarcely affected by environment as no or minor QE interaction effects for these traits were detected. Genome-wide identification of the introgressive GB components and mapping of the fiber-related QTLs indentified in this study will be beneficial for the simultaneous marker-assistant selection of improved fiber quality and lint yield in upland cotton breeding.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号