首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional Group Identity Does not Predict Invader Impacts: Differential Effects of Nitrogen-fixing Exotic Plants on Ecosystem Function
Authors:Stephanie G Yelenik  William D Stock  David M Richardson
Institution:(1) Institute for Plant Conservation, University of Cape Town, Rondebosch, 7701, South Africa;(2) Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA;(3) Botany Department, University of Cape Town, Rondebosch, 7701, South Africa;(4) Centre for Ecosystem Management, Edith Cowen University, Joondalup, 6027, WA, Australia;(5) Centre for Invasion Biology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
Abstract:The introduction of exotic plants can have large impacts on ecosystem functions such as soil nutrient cycling. Since these impacts result from differences in traits between the exotic and resident species, novel physiological traits such as N cycling may cause large alterations in ecosystem function. It is unclear, however, whether all members of a given functional group will have the same ecosystem effects. Here we look at a within functional group comparison to test whether an annual (Lupinus luteus) and a perennial (Acacia saligna) N-fixing exotic species cause the same effects on soil N cycling in the fynbos vegetation of South Africa. We measured litterfall quantity and quality, and soil total nitrogen and organic matter for each vegetation type as well. Available nitrogen was quantified using ion exchange resin bags monthly for 1 year. We used microcosms to evaluate litter decomposition. Although both exotic species increased the available nitrogen in the soil, only Acacia increased the total soil N and organic matter. This could be explained by the slow decomposition of Acacia litter in the microcosm study, despite the fact that Acacia and Lupinus litter contained equivalent N concentrations. Presumably, low carbon quality of Acacia litter slows its decomposition in soil, resulting in retention of organic nitrogen in Acacia stands after clearing for restoration purposes. The differences in long term impacts of these annual and perennial species highlight the fact that not all N-fixing exotic species exert equivalent impacts. Ecologists should consider multiple traits rather than broadly defined functional groups alone when predicting invader impacts.
Keywords:Acacia saligna            available soil nitrogen  exotic plants  fynbos  litter decomposition            Lupinus luteus            organic soil nitrogen  South Africa
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号