首页 | 本学科首页   官方微博 | 高级检索  
     


Water scaffolding in collagen: Implications on protein dynamics as revealed by solid‐state NMR
Authors:Abil E. Aliev  Denis Courtier‐Murias
Affiliation:Department of Chemistry, University College London, London WC1H 0AJ, UK
Abstract:Solid‐state NMR studies of collagen samples of various origins confirm that the amplitude of collagen backbone and sidechain motions increases significantly on increasing the water content. This conclusion is supported by the changes observed in three different NMR observables: (i) the linewidth dependence on the 1H decoupling frequency; (ii) 13C CSA changes for the peptide carbonyl groups, and (iii) dephasing rates of 1H‐13C dipolar couplings. In particular, a nearly threefold increase in motional amplitudes of the backbone librations about C‐Cα or N‐Cα bonds was found on increasing the added water content up to 47 wt%D2O. On the basis of the frequencies of NMR observables involved, the timescale of the protein motions dependent on the added water content is estimated to be of the order of microseconds. This estimate agrees with that from wideline T2 1H NMR measurements. Also, our wideline 1H NMR measurements revealed that the timescale of the microsecond motions in proteins reduces significantly on increasing the added water content, i.e., an ~15‐fold increase in protein motional frequencies is observed on increasing the added water content to 45 wt% D2O. The observed changes in collagen dynamics is attributed to the increase in water translational diffusion on increasing the amount of added water, which leads to more frequent “bound water/free water” exchange on the protein surface, accompanied by the breakage and formation of new hydrogen bonds with polar functionalities of protein. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 246–256, 2014.
Keywords:protein  collagen  water  structure  dynamics  solid‐state NMR
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号