首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of molecular structure of sugar‐phosphate backbone and nucleic acid bases in the formation of single‐stranded and double‐stranded DNA structures
Authors:Valeri Poltev  Victor M Anisimov  Victor I Danilov  Dolores Garcia  Carolina Sanchez  Alexandra Deriabina  Eduardo Gonzalez  Francisco Rivas  Nina Polteva
Institution:1. Autonomous University of Puebla, Puebla, Mexico;2. NCSA, University of Illinois at Urbana‐Champaign, Urbana, IL;3. Institute of Molecular Biology and Genetics, Ukraine;4. Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Russia
Abstract:Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na+‐ions (dDMPs) have demonstrated that the main characteristics of Watson‐Crick (WC) right‐handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar‐phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar‐phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr‐Pur from Pur‐Pyr, and Pur‐Pyr from Pyr‐Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar‐phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z‐family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 640–650, 2014.
Keywords:DNA conformation families  DNA sequence dependence  single‐strand interactions  DFT computations  deoxydinucleoside monophospates
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号