首页 | 本学科首页   官方微博 | 高级检索  
     


The benzomorphan-based LP1 ligand is a suitable MOR/DOR agonist for chronic pain treatment
Authors:Pasquinucci Lorella  Parenti Carmela  Turnaturi Rita  Aricò Giuseppina  Marrazzo Agostino  Prezzavento Orazio  Ronsisvalle Simone  Georgoussi Zafiroula  Fourla Danai-Dionysia  Scoto Giovanna M  Ronsisvalle Giuseppe
Affiliation:Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy. lpasquin@unict.it
Abstract:AimsPowerful analgesics relieve pain primarily through activating mu opioid receptor (MOR), but the long-term use of MOR agonists, such as morphine, is limited by the rapid development of tolerance. Recently, it has been observed that simultaneous stimulation of the delta opioid receptor (DOR) and MOR limits the incidence of tolerance induced by MOR agonists. 3-[(2R,6R,11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-tetrahydro-2,6-methano-3-benzazocin-3(2H)-yl]-N-phenylpropanamide (LP1) is a centrally acting agent with antinociceptive activity comparable to morphine and is able to bind and activate MOR and DOR. The aim of this work was to evaluate and compare the induction of tolerance to antinociceptive effects from treatment with LP1 and morphine.Main methodsHere, we evaluated the pharmacological effects of LP1 administered at a dose of 4 mg/kg subcutaneously (s.c.) twice per day for 9 days to male Sprague–Dawley rats. In addition, the LP1 mechanism of action was assessed by measurement of LP1-induced [35S]GTPγS binding to the MOR and DOR.Key findingsData obtained from the radiant heat tail flick test showed that LP1 maintained its antinociceptive profile until the ninth day, while tolerance to morphine (10 mg/kg s.c. twice per day) was observed on day 3. Moreover, LP1 significantly enhanced [35S]GTPγS binding in the membranes of HEK293 cells expressing either the MOR or the DOR.SignificanceLP1 is a novel analgesic agent for chronic pain treatment, and its low tolerance-inducing capability may be correlated with its ability to bind both the MOR and DOR.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号