首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced liver but not muscle OXPHOS in diabetes and reduced glucose output by complex I inhibition
Authors:Miriayi Alimujiang  Xue-ying Yu  Mu-yu Yu  Wo-lin Hou  Zhong-hong Yan  Ying Yang  Yu-qian Bao  Jun Yin
Affiliation:1. Department of Endocrinology and Metabolism, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China;2. Department of Chemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Abstract:Mitochondrial function is critical in energy metabolism. To fully capture how the mitochondrial function changes in metabolic disorders, we investigated mitochondrial function in liver and muscle of animal models mimicking different types and stages of diabetes. Type 1 diabetic mice were induced by streptozotocin (STZ) injection. The db/db mice were used as type 2 diabetic model. High-fat diet-induced obese mice represented pre-diabetic stage of type 2 diabetes. Oxidative phosphorylation (OXPHOS) of isolated mitochondria was measured with Clark-type oxygen electrode. Both in early and late stages of type 1 diabetes, liver mitochondrial OXPHOS increased markedly with complex IV-dependent OXPHOS being the most prominent. However, ATP, ADP and AMP contents in the tissue did not change. In pre-diabetes and early stage of type 2 diabetes, liver mitochondrial complex I and II-dependent OXPHOS increased greatly then declined to almost normal at late stage of type 2 diabetes, among which alteration of complex I-dependent OXPHOS was the most significant. In contrast, muscle mitochondrial OXPHOS in HFD, early-stage type 1 and 2 diabetic mice, did not change. In vitro, among inhibitors to each complex, only complex I inhibitor rotenone decreased glucose output in primary hepatocytes without cytotoxicity both in the absence and presence of oleic acid (OA). Rotenone affected cellular energy state and had no effects on cellular and mitochondrial reactive oxygen species production. Taken together, the mitochondrial OXPHOS of liver but not muscle increased in obesity and diabetes, and only complex I inhibition may ameliorate hyperglycaemia via lowering hepatic glucose production.
Keywords:diabetes  electron transport chain  insulin resistance  liver steatosis  NAFLD  obesity  ROS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号