首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production
Institution:2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;3. Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
Abstract:The efficiency of the fed-batch cultivation of recombinant Escherichia coli AT2471 for phenylalanine production is highly dependent on the distribution of the carbon flow between the main process products — biomass, phenylalanine, acetic acid and carbon dioxide. In order to enhance the process performance, the effects of several factors, namely glucose feeding, tyrosine feeding and oxygen supply, were investigated experimentally. As a result, a set of control strategies was developed, designed to tolerate phenylalanine synthesis at the expense of the remaining products. The DO was controlled to prevent acetic acid excretion due to oxygen limitation. The total amount of tyrosine fed was used to provide an optimal balance between biomass synthesis and that of phenylalanine. Special algorithms for control of the glucose feed rate were applied to eliminate the threat of acetic acid excretion due to overfeeding, and at the same time, to reduce excessive CO2 evolution caused by unnecessarily severe glucose limitation. The joint application of these strategies resulted in greatly improved efficiency in the phenylalanine production process: the final phenylalanine concentration reached 46 g/l, the yield was above 17%, and the productivity-0.85 g/l·h. In combination, these data exceed the results reported by others, and are much higher than those obtained by use before the implementation of the proposed complex of techniques.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号