首页 | 本学科首页   官方微博 | 高级检索  
     


The role of CO2 in cobalt-catalyzed peroxidations
Authors:Liochev Stefan I  Fridovich Irwin
Affiliation:The Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
Abstract:Augmentation, by CO(2)/HCO(3)(-), of Co(II)-catalyzed peroxidations was explored to clarify whether the rate enhancement was due to CO(2) or to HCO(3)(-). The rate of oxidation of NADH by Co(II) plus H(2)O(2), in Tris or phosphate, was markedly enhanced by CO(2)/HCO(3)(-). Phosphate was seen to inhibit the Co(II)-catalyzed peroxidation, probably due to its sequestration of the Co(II). When CO(2) was used, there was an initial burst of NADH oxidation followed by a slower linear rate. The presence of carbonic anhydrase eliminated this initial burst; establishing that CO(2) rather than HCO(3)(-) was the species responsible for the observed rate enhancements. Both kinetic and spectral data indicated that Co(II) was converted by H(2)O(2) into a less active form from which Co(II) could be regenerated. This less active form absorbed in both the UV and visible regions, and is assumed to be a peroxy bridged binuclear complex. The rate of formation of this absorbing form was increased by HCO(3)(-)/CO(2). A minimal mechanism consistent with these observations is proposed.
Keywords:Cobalt   Carbon dioxide   Bicarbonate   Hydrogen peroxide   NADH   Urate   Carbonic anhydrase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号