首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In situ incorporation of Fatty acids into lipids of the outer and inner envelope membranes of pea chloroplasts
Authors:Miquel M  Dubacq J P
Institution:Laboratoire de Physiologie Cellulaire, Université Pierre et Marie Curie, 4, place Jussieu, Tour 53 3E, 75252 Paris Cedex 05, France.
Abstract:When incubated with 1-14C]acetate and cofactors (ATP, Coenzyme A, sn-glycerol-3-phosphate, UDPgalactose, and NADH), intact chloroplasts synthesized fatty acids that were subsequently incorporated into most of the lipid classes. To study lipid synthesis at the chloroplast envelope membrane level, 14C-labeled pea (Pisum sativum) chloroplasts were subfractionated using a single flotation gradient. The different envelope membrane fractions were characterized by their density, lipid and polypeptide composition, and the localization of enzymic activities (UDPgalactose-1,2 diacylglycerol galactosyltransferase, Mg2+-dependent ATPase). They were identified as very pure outer membranes (light fraction) and strongly enriched inner membranes (heavy fraction). A fraction of intermediate density, which probably contained double membranes, was also isolated. Labeled glycerolipids recovered in the inner envelope membrane were phosphatidic acid, phosphatidyl-glycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol. Their 14C-fatty acid composition indicated that a biosynthetic pathway similar to the prokaryotic pathway present in cyanobacteria occurred in the inner membrane. In the outer membrane, phosphatidylcholine was the most labeled glycerolipid. Phosphatidic acid, phosphatidylglycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol were also labeled. The 14C-fatty acid composition of these lipids showed a higher proportion of oleate than palmitate. This labeling, different from that of the inner membrane, could result either from transacylation activities or from a biosynthetic pathway not yet described in pea and occurring partly in the outer chloroplast envelope membrane. This metabolism would work on an oleate-rich pool of fatty acids, possibly due to the export of oleate from chloroplast toward the extrachloroplastic medium. The respective roles of each membrane for chloroplast lipid synthesis are emphasized.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号