首页 | 本学科首页   官方微博 | 高级检索  
     


Intestinal absorption of hexoses in rats infected with Nippostrongylus brasiliensis
Authors:A.M. Scofield
Affiliation:Unit of Applied Zoology, Wye College (University of London), Ashford, Kent TN25 5AH, England
Abstract:The net absorption and accumulation of d-galactose and d-glucose by the small intestine of rats infected with N. brasiliensis were studied in vivo and in vitro. There was no change from control levels in the rate of galactose transfer in vivo by the entire intestine 10 days after infection but fluid transfer was significantly lower at this time. Mucosal galactose transfer in vitro by the entire intestine or by each one-third of the intestine did not change significantly during infection but 10 days after infection mucosal glucose transfer was significantly lower in the infected proximal one-third of the intestine and significantly greater in the distal one-third than in the comparable segments in controls; mucosal glucose transfer by the entire intestine was not affected by infection. Serosal transfer of both hexoses by the proximal two-thirds of the intestine and by the entire intestine was significantly reduced 10 days after infection. Between 10 and 18 days after infection the rate of serosal galactose transfer in vitro was significantly lower than control levels. The difference in response of mucosal and serosal hexose transfer rates to infection appears to be due, in part, to an increase in intestinal glucose metabolism or increased tissue retention of galactose during infection. Mucosal fluid transfer in vitro by the entire intestine was not significantly different from control levels at 10 days of infection when either hexose was used, although there was a significant reduction in the jejunal segment when glucose was used. Mucosal fluid transfer by the entire intestine in the presence of galactose was significantly greater during the rejection phase of the parasite population than in controls.
Keywords:nematode  rat  malabsorption  absorption  small intestine  sugar  hexose  water  fluid transfer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号