首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Karyotype instability and anchorage-independent growth in telomerase-immortalized fibroblasts from two centenarian individuals
Authors:Mondello Chiara  Chiesa Massimo  Rebuzzini Paola  Zongaro Samantha  Verri Annalisa  Colombo Tina  Giulotto Elena  D'Incalci Maurizio  Franceschi Claudio  Nuzzo Fiorella
Institution:Istituto di Genetica Molecolare, Via Abbiategrasso 207, Pavia 27100, Italy. mondello@igm.cnr.it
Abstract:Several reports have shown that the ectopic expression of the human telomerase catalytic subunit gene (hTERT) leads to an indefinite extension of the life span of human fibroblasts cultured in vitro without the appearance of cancer-associated changes. We infected two fibroblast strains derived from centenarian individuals with an hTERT containing retrovirus and isolated transduced massive populations (cen2tel and cen3tel). In both populations, hTERT expression reconstituted telomerase activity and extended the life span. In cen2tel, a net telomere lengthening was observed while, in cen3tel, telomeres stabilized at a length lower than that detected in senescent parental cells. Interestingly, both cen2tel and cen3tel cells developed chromosome anomalies, numerical first and structural thereafter. Moreover, cen3tel cells acquired the ability to grow in the absence of solid support, a typical feature of transformed cells. The results we present here highlight an unexpected possible outcome of cellular immortalization driven by telomerase reactivation, and indicate that, in some cases, an artificial extension of cellular replicative capacity can increase the probability of occurrence of genomic alterations, which can lead to cellular transformation.
Keywords:Telomeres  Telomerase  Cellular immortalization  Anchorage-independent growth  Cellular transformation  Karyotype instability  Centenarians
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号