Finite element analysis of two dimensional steady flow in model arterial bifurcation |
| |
Authors: | M K Patil K Subbaraj |
| |
Affiliation: | Department of Applied Mechanics, Indian Institute of Technology, Madras. |
| |
Abstract: | The purpose of the investigation reported in this paper is to determine theoretically the fluid dynamic field in models of common iliac arterial bifurcation and to identify the flow features which might influence the predominant occurrence of atherosclerotic lesions at such sites. This has been accomplished by numerically simulating fluid flow through 90 degrees symmetric bifurcations with branch-to-trunk area ratios of 0.8-1.414 and for Reynolds numbers ranging from 100 to 400. The analysis predicts flow reversal along the outer wall in models with area ratios over unity for high Reynolds number range, while no flow reversal occurred in models with area ratio below unity; a low shear zone along the outer wall and high shear stresses at the divider lip. Adverse pressure gradients are observed along the outer wall downstream of the corner point, the magnitudes increased with Reynolds number for a given branch to area ratio. Biological implication of the results is discussed with specific reference to the sites of atherosclerotic lesions found in man for these geometries. |
| |
Keywords: | |
|
|