首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of skeletal muscle myosin light chain kinase by calcium(2+) and calmodulin
Authors:D K Blumenthal  J T Stull
Abstract:Many biological processes are now known to be regulated by Ca2+ via calmodulin (CM). Although a general mechanistic model by which Ca2+ and calmodulin modulate many of these activities has been proposed, an accurate quantitative model is not available. A detailed analysis of skeletal muscle myosin light chain kinase activation was undertaken in order to determine the stoichiometries and equilibrium constants of Ca2+, calmodulin, and enzyme catalytic subunit in the activation process. The analysis indicates that activation is a sequential, fully reversible process requiring both Ca2+ and calmodulin. The first step of the activation process appears to require binding of Ca2+ to all four divalent metal binding sites on calmodulin for form the complex, Ca42+-calmodulin. This complex then interacts with the inactive catalytic subunit of the enzyme to form the active holoenzyme complex, Ca42+-calmodulin-enzyme. Formation of the holoenzyme follows simply hyperbolic kinetics, indicating 1:1 stoichiometry of Ca42+-calmodulin to catalytic subunit. The rate equation derived from the mechanistic model was used to determine the values of KCa2+ and KCM, the intrinsic activation constants for each step of the activation process. KCa2+ and KCM were found to have values of 10 microM and 0.86 nM, respectively, at 10 mM Mg2+. The rate equation using these equilibrium constants accurately predicts the extent of enzyme activation over a wide range of Ca2+ and calmodulin concentrations. The kinetic model and analytical techniques employed herein may be generally applicable to other enzymes with similar regulatory schemes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号