Abstract: | The function of MHC class II HLA-DR molecules expressed on a human B lymphoid progenitor cell line FL8.2.4.4 (abbreviated as FL4.4) was examined. FL4.4 cells expressed HLA-DR molecules and stimulation of the DR molecules by anti-DR mAb or by superantigen TSST-1 induced strong augmentation of homocytic aggregation and protein tyrosine phosphorylation in FL4.4 cells. Induced homocytic aggregation in FL4.4 consists both of LFA-1/ICAM-1-dependent and -independent pathways as revealed by mAb blocking experiments. Metabolic inhibitors, NaN3 and cytochalasin B, blocked the induced homocytic aggregation of FL4.4. Early mature Daudi B cell lines also showed a similar type of homocytic aggregation by stimulation with anti-DR mAb. Daudi cells are more sensitive to protein kinase inhibitors herbimycin A and H7 than FL4.4 cells in their blocking of induced homocytic aggregation, while W7 showed stronger inhibitory effects on FL4.4 cells than on Daudi cells. Western blotting analysis revealed that the stimulation of DR molecules induced protein tyrosine phosphorylation of 100-kDa, 90-kDa, 60-kDa and 55-kDa proteins in FL4.4 cells, while, in Daudi cells 110-kDa, 100-kDa and 80-kDa proteins were phosphorylated. These results suggest that different signaling pathways through class II molecules are employed depending on the maturational stage of B-cell differentiation. |