首页 | 本学科首页   官方微博 | 高级检索  
   检索      


FREEZING STRESS AND OSMOTIC DEHYDRATION IN FUCUS DISTICHUS (PHAEOPHYTA): EVIDENCE FOR PHYSIOLOGICAL SIMILARITY1
Authors:Gareth A Pearson  Ian R Davison
Abstract:The effects of osmotic dehydration and freezing on photosynthesis were studied in the brown alga Fucus distichus L. The data indicated that F. distichus exhibits similar physiological responses to both osmotic dehydration and freezing stress and that these responses resemble those in the literature for the effect of desiccation in air. Both stresses inhibited light-limited (Psubsat) and light-saturated (Pmax) photosynthesis measured immediately after plants were reimmersed in seawater. The degree of initial inhibition and subsequent recovery of photosynthesis were proportional to the severity of the dehydration or freezing treatment. Psubsat and Pmax recovered completely from osmotic dehydration for 3 h in 200% and 3 hr at – 10°C, but recovery was only partial following 3 h in 300%o or 3 h at – 15°C. In most cases, recovery was complete within 2 h following dehydration, with little further recovery occurring between 2 and 24 h posttreatment. No time-dependent recovery occurred following severe freezing. Observations using the vital stain fluorescein diacetate suggested that the lack of complete recovery might be due to severe damage or death of a proportion of cells in the thallus. There were no clear effects of either osmotic dehydration or freezing on dark respiration (Rd), although Rd was stimulated in all emersed treatments (frozen plants and 5° C controls) immediately following reimmersion. Measurement of chlorophyll fluorescence induction kinetics indicated that both osmotic dehydration and freezing reduced the ratio of variable to maximum florescence (Fv/Fm), indicating a decrease in the quantum efficiency of photosystem I. Based on these data, we suggest that there are common cellular and physiological components involved in the response of fucoid algae to a range of water stresses. This hypothesis was supported by experiments that showed that osmoacclimation in hyperosmotic seawater (51%o)for 2 weeks increased the ability of F. distichus to recover from freezing at – 15° C. During acclimation, mannitol content increased under hyperosmotic conditions and decreased under hypoosmotic conditions. Changes in plasma membrane integrity, determined by fresh weight: dry weight ratio, and amino acid release following freezing indicated an increasing gradient of freezing tolerance from low to high salinity. However, none of these physiological changes fully explained the marked increase in the freezing tolerance of photosynthesis observed in plants acclimated under hyperosmotic conditions.
Keywords:freezing  Fucus distichus  intertidal ecology  osmotic dehydration  Phaeophyta  photosynthesis  stress physiology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号