首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The tRNA-modifying function of MnmE is controlled by post-hydrolysis steps of its GTPase cycle
Authors:Silvia Prado  Magda Villarroya  Milagros Medina  M-Eugenia Armengod
Institution:1.RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe, 46012-Valencia, Spain, 2.Departamento de Bioquímica, Biología Molecular y Celular. Instituto de Biocomputación y Física de Sistemas Complejos (BIFI). Universidad de Zaragoza, 50009-Zaragoza, Spain and 3.Biomedical Research Networking Centre in Rare Diseases (CIBERER) (node U721), Spain
Abstract:MnmE is a homodimeric multi-domain GTPase involved in tRNA modification. This protein differs from Ras-like GTPases in its low affinity for guanine nucleotides and mechanism of activation, which occurs by a cis, nucleotide- and potassium-dependent dimerization of its G-domains. Moreover, MnmE requires GTP hydrolysis to be functionally active. However, how GTP hydrolysis drives tRNA modification and how the MnmE GTPase cycle is regulated remains unresolved. Here, the kinetics of the MnmE GTPase cycle was studied under single-turnover conditions using stopped- and quench-flow techniques. We found that the G-domain dissociation is the rate-limiting step of the overall reaction. Mutational analysis and fast kinetics assays revealed that GTP hydrolysis, G-domain dissociation and Pi release can be uncoupled and that G-domain dissociation is directly responsible for the ‘ON’ state of MnmE. Thus, MnmE provides a new paradigm of how the ON/OFF cycling of GTPases may regulate a cellular process. We also demonstrate that the MnmE GTPase cycle is negatively controlled by the reaction products GDP and Pi. This feedback mechanism may prevent inefficacious GTP hydrolysis in vivo. We propose a biological model whereby a conformational change triggered by tRNA binding is required to remove product inhibition and initiate a new GTPase/tRNA-modification cycle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号