APPARENT IN VIVO ACETYLCHOLINE TURNOVER RATE IN WHOLE MOUSE BRAIN: EVIDENCE FOR A TWO COMPARTMENT MODEL BY TWO INDEPENDENT KINETIC ANALYSES |
| |
Authors: | Frank J. Vocci Jr Michael J. Karbowski William L. Dewey |
| |
Affiliation: | Department of Pharmacology, Box 726, Medical College of Virginia, Richmond, VA 23298, USA. |
| |
Abstract: | Abstract— Acetylcholine turnover has been determined in whole mouse brain using a newly available high specific activity [3H]choline (70 Ci/mmol). Animals were killed at various time points (0.25–10 min) after pulse adminstration of [3H]choline (Ch) by microwave irradiation of the head. Steady-state levels of ACh were determined by radioenzymatic analysis as described by G oldberg & M c C aman (1973) as modified by M c C aman & S tetzer , 1977. Ch levels were determined by a modification of the method of M c C aman & S tetzer (1977). Radiolabelled metabolites of [3H]Ch were separated by selective extraction of [3H]Ch and [3H]ACh inio tetraphenylboron in 3-heptanone (C arroll et al. , 1977) coupled with an enzymatic separation of [3H]Ch from [3H]ACh. A precursor-product relationship was verified for Ch and ACh specific activities. Acetylcholine turnover rate was determined by the biosynthesis ratio method (S chuberth et al. , 1969, Method 1) and by the finite-differences method (N eff et al. , 1971, Method 2). Both methods of kinetic analysis revealed two distinct turnover rates for acetylcholine. In the first phase (0.25–1.5 min post-[3H]Ch), the ACh turnover rate averaged 22nmol/g/min (both methods). During the second phase, (2–10 min) acetylcholine turnover rates were significantly ( P < 0.05 and P < 0.01) lower; i.e. 7nmol/g/min (Method 1) and 5.9 nmol/g/min (Method 2). The data are consistent with a 2-compartment model for ACh turnover in whole mouse brain. Additionally, the method described for the separation of radiolabelled metabolites of [3H]Ch allows an accurate determination of ACh turnover in as little as 2 mg of tissue. |
| |
Keywords: | |
|
|