首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ratiometric mechanoluminescence in single Pr3+-activated LiGa5O8
Authors:Sheng Wu  Puxian Xiong  Kexin Qin  Yao Xiao  Binli Xiao  Kang Chen  Dongliang Jiang  Yinzhen Wang
Institution:1. Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, School of Physics, South China Normal University, Guangzhou, China;2. School of Physics and Optoelectronics, School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China;3. School of Applied Physics and Materials, Wuyi University, Jiangmen, China
Abstract:Mechanoluminescence (ML) materials have found potential applications in information storage, anti-counterfeiting, and stress sensing. Conventional stress sensing based on absolute ML intensity is prone to significant mistakes owing to the unpredictability of measurement surroundings. However, implementing a ratiometric ML sensing technique may considerably ameliorate this issue. In this study, a single activator-doped gallate material (LiGa5O8:Pr3+) is proposed to determine the relationship between the ML intensity and the change in local positional symmetry that occurs when the material is subjected to stress. The sensing reliability of the ML intensity ratio under different factors (Force; Content; Thickness and Materials) is systematically analyzed, where the factor that has the greatest effect on the proportional ML is the concentration, with the ML intensity asymmetry ratio decreasing from 1.868 to 1.300 varying concentration at constant stress. The colour-resolved visualization of stress sensing is further realized, which opens a new path for a ratiometric ML-based strategy to improve the reliability of stress sensing.
Keywords:Pr3+  ratiometric ML  single activator doping  stress sensing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号